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Abstract

The MHD stability of the cometary inner sheath determined by the

balance between the inward Lorentz body force and the outward

ion-neutral drag force is investigated by numerically solving the

wave equations which include resistivity, plasma motion and plasma

pressure with the help of two-point boundary value method. The

eigenvalues a n d  t h e  eigenfunctions are obtained numerically by

treating the cometary inner sheath as a layer of finite thickness,

b o u n d e d  b y  t h e  c o n t a c t  s u r f a c e ,  i . e . ,  t h e  d i a m a g n e t i c  cavity

boundary. To gain an insight into the problem, certain limiting cases

of the wave equations are also discussed, The diamagnetic cavity

boundary and the adjacent layer of about 100 km thickness of comet

Halley is found to be unstable. The effects of finite plasma pressure,

dissociative recombination, mass loading due to photoionization,

resistivity, and plasma motion are found to be stabilizing but are

unable to quench the instability completely. An estimate of ‘TC/ ~i

shows that it lies in the range 10 to 20 or even higher which appears

to be sufficient for the effective penetration of the magnetic field

perturbations into the cavity surface. Motion of the Halley ionopause

has been confirmed by observations: according to Neubauer (1987),

Halley ionopause  seemed to have strong ripples with a wavelength of

several hundred kilometers,
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I, INTRODUCTION:

Three categories of cometary boundaries have been identif ied

according to the observations (Cravens, 1989): i) cometary dynamical

boundries, ii) solar wind and lMF boundaries,  and i i i)  t ransient

boundaries, The dynamical boundaries are the permanent features of

cometary plasma environment, The instruments on board  the Giotto,

Vega and ICE showed that the plasma in the inner coma of the comet

Halley was almost stationary and of cometary origin. A field-free

d i a m a g n e t i c  c a v i t y  d e e p  w i t h i n  t h i s  s t a g n a t i o n  r e g i o n  w a s

encountered by the Giotto Spacecraft (Neubauer et al., 1986). The

magnetic field dropped from 20 nT to nearly zero within a thin layer

of about 25 km thickness. The magnetic field exhibited a maximum

of about 50-60 nT thousands of kilometers away from the ionopause

(cavity surface designated as CS) - 4600 km from the nucleus. The

format ion  of  such  a  f ie ld- f ree  reg ion  has  been  expla ined  by

considering the balance between the inward Lorentz JxB body force

and the outward ion-neutral  drag force exerted on the plasma

element (Ip and Axford 1982; Cravens, 1986; Ip and Axford 1987,

1990).

The  s tab i l i ty  of  the  cometary ionopause t rea ted  as  tangent ia l

d i s c o n t i n u i t y  i n t e r f a c e  w a s  i n v e s t i g a t e d  f o r  d i s t u r b a n c e s  o f

wavelengths much greater than the ionopause  thickness (Ershkovich

and Mendis, 1986; Ershkovich et al., 1986). Ershkovich  a n d  Flammer

(1 988) have shown that the finite amplitude effects can suppress the

Kelvin -Helmholtz  instability whereas the Rayleigh-Taylor and the

drag instabilities persist. Ershkovich  et al., (1989) and Mckenzie et



al., ( 1 9 9 0 )  p e r f o r m e d  a  s t a b i l i t y

ionosphere/i onopause o f  t h e  c o m e t

approximation and discussed certain

4

analysis o f  t h e  c o m e t a r y

H a l l e y  b y  u s i n g  J W K B

limiting cases of the wave

equations under the slow variation approximation of the equilibrium

quant i t i es .  The  ionopause boundary  resu l t ing  f rom the  ba lance

between the ion-neutral friction and Lorentz body force was shown

to be unstable.  Inclusion of the effects  of  photoionization and

dissociative recombination resulted in the stabilization of ionosphere

except the Halley ionopause and adjacent ionospheric layer of about

100 km thickness. Numerical solutions of the MHD stability wave

equations derived in Ershkovich  et al., (1989) and McKenzie et al.,

(1 990) for the cometary ionosphere determined by the balance

between the inward Lorentz  body force and the outward ion-neutral

drag force were obtained by using a two-point  boundary value

m e t h o d  ( S r i v a s t a v a  e t  a l . ,  1 9 9 2 ) .  T h e  eigenvalues a n d  t h e

eigenfunctions were obtained numerically by treating the cometary

ionosphere as a layer of finite thickness, bounded by the diamagnetic

cavity boundary. The magnetic field structure discovered in the

ionosphere of comet Halley /Giacobini-Zinner was found to be

unstable. T h e  e f f e c t s  o f  f i n i t e plasma pressure,  dissociat ive

recombination and mass loading due to photoionization were found

to  be  s tab i l iz ing ,

completely, i.e., the

1000 km thickness

but  were  unable

Halley ionopause

remained unstable.

to quench the instabil i ty

and adjacent layer of about

It was also found that the

higher the neutral production rate the lesser was the growth rate for

the instability. Ershkovich and Israelevich (1 992) have studied the

effect of transverse plasma motion on the stability of the cometary
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ionosphere and concluded that the instability might be convected

d o w n s t r e a m ,  T h e  ionopause was  shown to  undergo  convec t ive

instability,

In this paper, we study the stability of

the effects of plasma resistivity, plasma

the cometo-sheath including

motion along the sun-comet

line and plasma pressure, by considering the cometary sheath as a

layer of finite thickness bounded by the ionopause  on the inner side.

The equations governing the stability are solved numerically for

certain parameters for  the  comet  Hal ley  by  us ing  a  two-poin t

boundary value method. Although, the two-point boundary value

method precludes the study of the stability of the critical layer of 25

km thickness due to the singularity of solutions as the magnetic field

goes to zero at the ionopause, the present work is a step forward in

that it presents numerical solutions and includes the effects of finite

resistivity and radial plasma motion on the stability of the cometo-

sheath which were not considered in previous papers (Ershkovich et

al., 1989; McKenzie et al,, 1990; Srivastava  et al., 1992; Ershkovich

and Israelevich, 1992). Certain limiting cases of the wave equations

have also been discussed.  We have obtained growth rates for

disturbances of wavelengths ranging from 125 km to 2000 km. We

have also est

perturbations

characteristic

ranges from 1

mated ~~/ ~j where ~c is the convection time for the

t o  b e  c o n v e c t e d  w e l l  d o w n s t r e a m  a n d  ~i is the

time for the amplitude to grow and found that  i t

) to 20 or even higher which may be sufficient for the

instability signatures to penetrate the boundary.  The effects  of

photoionization, recombination, plasma pressure, and resistivity were



found stabilizing

motion included

cometo-sheath s

the plasma bulk

but the instability still persisted.

in the analysis resulted in the s

nce perturbations are convected

velocity before growing substantial

6

The slow plasma

abilization of the

downstream with

ly.

The plan of the paper is as follows: In section 2 we formulate the

linearized non-dimensional MHD equations suitable for numerical

computation as a

solutions of wave

cases in section 3.

remarks are given

two-point boundary value problem. Approximate

equations have been discussed in certain limiting

Results are described in section 4 and concluding

in section 5. Computational procedure has been

described in Appendix A.

11. Formulation of the problem:

a). The Configuration:

We study the stability of a cometary ionospheric layer of about 1000

km thickness adjacent to and outside (he ionopause in the form of a

slab, “the inner boundary being at the ionopause. The geometry

considered is shown in Fig. (lc). Although the plasma in this layer is

said to be stagnant, it is expected that there exists a very slow

motion towards the ionopause (creeping motion). The MHD equations

govern ing  the  evolu t ion  of  phys ica l  quant i t i es  in  a  cometary

ionosphere including plasma motion, resistivity, pressure,

photoionization, and recombination are obtained by the normal

procedure of l inearizing the  bas ic  equa t ions .  The  appropr ia te
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continuity and momentum equations for a compressible plasma as

derived in Ershkovich  et al,, (1989) are:

The continuity eqation:

ap+v . ~ p2
=spn-~

x “ ‘p” ) i
(1)

The momentum equation:

dfi

( 1

B2
;VP+G+

E.v 5— .  — +
dt

V() (U* – c)
47Tp

(2)

Here, p, ii, P, E, ;nr and Mi and denote, respectively, the plasma

density, the velocity, the pressure, the magnetic field, the neutral gas

velocity, and the mass of cometary ion. V. =

neutral collision frequency enhanced by the

bpn and Up2 /Mi, IWPI’t2SeIIt,  IYXpt3CtiVely,

and dissociation recombination rate.

v + &pn/p  is the ion

mass loading. The terms

the photoionization rate

The Faraday induction equation for a resistive plasma assuming that

resistivity is uniform is given by:

(3)

Here, ~ denotes the resistivity  of the plasma.

We derive the magnetic field structure by following Ip and Axford

(1987)  by  neglec t ing  the  p lasma iner t ia  and  pressure  in  the

momentum equation. The balance between the magnetic stresses

acting on the plasma element and the ion-neutral friction determines
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the equilibrium structure of the magnetic f ield.  The density is

assumed to be inversely proportional  to the distance from the

nucleus and is taken as:

I_li = rlio (r / L)rn (4)

where L is some radial scale length, r is the distance from the

nucleus which coincides with x in the slab geometry, and m is the

power index for the variation of plasma density.

The resulting structure of the magnetic field is given by (Ershkovich

et al,, 1989)

~=~ ( ())
1/2

Bm

l+21n& f m = - 1
r rm

(5b)

where Bm denotes the maximum magnetic field at a distance rm

from the nucleus.

The magnetic field vanishes at a radial distance ro from the nucleus

given by

(–)l-m l/(l+m)
ro = rm 2 f m*-1

ro = r m exp (-1/2) , m = ‘1

(6a )

(6b)
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The background plasma density pO is assumed to be determined by

the photochemica]  equilibrium neglecting convection, i.e.,

2
~Po/Mi= 6 p,,

w h e r e  et i s

photoionization

the density of

(7)

the  d i ssoc ia t ive recombination rate, 5 is the

rate, Mi is the ion mass of water group ions and pn i s

neutrals.

The equil ibrium sta

equations (1) to (3).

becomes:

dUo _ 1 dpm+Uo— —
dx ‘; dx

e is described by set

In particular, the stress

V2
Voun–uo)–:

1

&ing at to zero in

balance equation (2)

(8)

where Pto ‘Po+ /8K, V:. = B: /47cpo.

The third term on the r ight  hand side represents the magnetic

tension force in which R = –VRO /130 is the radius of curvature of the

lines of force. UO is in the negative x-direction and U J1 is in the

positive x-direction.

The solution of the equilibrium Faraday equation gives:

uo=-(c-? l/I.]]) (9)

where lJ~ =dB--#/~0 =  A/1~
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A=(21nx+]-2]nxnl)x

B=2(lnxnl-lnx)

C = q B/A, with x replaced by x]

xl = xo + e, e is taken as 10 to 20 km.

x = r  a n d  xm = rm in the slab geometry

the ionopause boundary.  The thickness

whose stability we wish to investigate is

and UO is negative outside

of the ionospheric layer

very much smaller than the

scale length of the magnetic field variations i.e. LB is very large and

can be taken to be uniform in this layer. Eq, (9) gives a small

negative value of UO which can be taken to be uniform in the first

approximation, It is zero at x = I-O , the ionopause.  In the numerical

computation, the integration is performed from x = ( xl + 1000) km to

x = xl km to avoid the singularity at x = ro(x] > ro)in t h e  w a v e

equations.

b). Wave Equations:

The

Fig,

axis

stability analysis is made by taking a planar geometry shown in

(lc). The equilibrium magnetic field is assumed to lie along the z-

(perpendicular to the radial direction assumed to coincide with x

-axis in planar geometry) which varies in the x-direction. The neutral

gas  and  the  p lasma flow along the x-direction.  The perturbed

variables are:

& . 51
Pl=P– P()/ =1= =50, pm .

47C ‘

p= P-Po G=c - ~. ~ (U, v,w) (lo)
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which denote, respectively, the perturbations in density, magnetic

pressure, plasma pressure, and plasma velocity.

The stability analysis is  restr icted to twist-free magnetic field

p e r t u r b a t i o n s ,  -i.e, B.gradfi  is neglected. Following the usual procedure

for the derivation of the linearized stability equations, we arrive at

the following wave equations:

Q+v.f30b=-flP1
at

(11)

(($ + v~) (poi) = ?PKn-v(p+Pm)+(9P1-R – Uovo pl) 2

(12)

A

x is the unit vector along x-axis ,

Equation (13) can be rewritten in the form

(15)

32 a2 a2
where q

= poll r V2 .— — —ax2 + ay2 + az2 f
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N2 1 dP(l 1 dB()
and ~ = —— – — —

PO ‘ x Bo dx (16)

T h e  q u a n t i t y  Nz is the MHD analogue  of the square of the 13runt-

Vaisala frequency (Brunt, 1941) and is a function of x. It plays a

crucial role in the

Taking divergence

(11 ), we obtain

pointwise/local stability analysis of the system.

of Eq, (12) and making use of continuity equation

( ~aV2+R X+3 (:)
) ‘m = ($+ ‘o)

where

2
co =YP90/Po=~ f fory=l and ‘go = nio To

For the sake of simplicity, the plasma pressure is assumed to be

isotropic and the cometosheath to be isothermal. Although there is

no rigorous justification for assuming isotropic and isothermal, a

major motivating factor is that when the same assumption is made in

the ideal MHD theory, the main features of MHD equilibrium and

stability theory (sound waves, Alfven  waves, kink and interchange



instabilities, “frozen in”

(Hasam  and Huba, 1987).

The x-component of Eq. (

terms of pm and q:

heorem) remain quali tat ively una

12) gives the per

(9 - Uovo” _+~ )Pl .(&+ (2/R) )Pm

Equations (15),  (17),  and (18) consti tute

urbation in dens

&
‘(at + Vo) q

the

equations governing the stability of the cometary

general, the equilibrium quantities are functions of

13

tered

:y in

(18)

system of  wave

inner sheath, In

x and the various

operators do not commute.  The wave equations  are, therefore, solved

numer ica l ly  as  an eigenvalue p r o b l e m by us ing a  two-poin t

boundary value method. After  el iminating q and performing a

normal mode analysis by assuming that all perturbations vary as

f(x,y,t)  = f*(x) exp (i (kxx  + k yy - cot)) , the non-dimensional form of

the wave equations can be written as:

* *
D2P; = a21  p; + a22 DP~ + a23 pm + az4 DPm (19)

* *D2p: . a41 p; + a42 Dp~ + a43 pm + a44 DPm (20)

Here, D = & and the coefficients aij are given in appendix B. The

non-dimensional quantities are
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(21)

where L,  Qi , Pnlo are the characteristic scale length, ion gyro-

f r e q u e n c y  a n d  e q u i l i b r i u m  m a g n e t i c  p r e s s u r e .  T h e  b o u n d a r y

conditions to be satisfied are:

P;=o
atx=O (22)

Dp: = O

* *
and p ~ and Dp ~ are bounded as x -+ = .

The system of equations to be solved for the case of zero plasma

pressure is different from the system of Eqs, (19)-(22) because, they

cannot be derived by taking the limit as pressure goes to zero. The

requisite system of equations for the zero plasma pressure case is

derived from Eqs. (1 1)-(13) by putting the plasma pressure term

(Vp)  t o  z e r o . Performing normal mode analysis ,  the system of

equations to be numerically solved subject to the boundary condition

(22) are written as:

k=l

where [z] = [2], 22,23, 24] = [P; ,P: ,DP: ,q*l

The elements of the matrix B are given in appendix C.

(23)

(24)
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The numerical procedure for solving Eqs. (19), (20) and (21) and the

system of equations (23), together with the boundary conditions (22)

as an eigenvalue problem by using a two-point boundary value

method is descr bed in” Appendix A.

3. Approximate Solutions:

It would be worthwhile to study certain limiting cases of the wave

equations (15), (17), and (18) using JWKB approximation before

presenting numerical results. Eliminating R from equations (15) and

(17) with the help of Eq. (18) and neglecting curvature effect we

obtain:

(25)

{

&( -a_kz (g  - Uovo ) + & )}+uo~+P~xPm

(

a
(: + Vfj) ~

a2tl—— + uo~ – co ~+~+k2c:+g
)

– Uovo q

(26)

It may be interpreted that the perturbations in the magnetic

pressure and the particle flux are represented by the left and the

right sides of Eqs. (25) and (26) respectively. Also for the sake of
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convenience a spatial decay due to density stratification is

subtracted out, i.e., we write

Q(x,y,t)=

In case the

compared to

Q*(x) exp(x/2H)  exp (i (kXx + kyy - ret)) (27)

magnetic pressure perturbations are negligible as

perturbation in particle flux, the right hand sides of Eqs.

(23) and (24) with the help of Eq. (27) give

( q_ ) N2

[

c:
–i@+~+2H (VO -iCD)+_j_

)
g–uovo–~=o (28)

2

~-iCO+~+g+k2c~-
c~

Uovo – Z’” (29)

From Eq, (28) we see that exponentially growing

if(Uo < O , because the equilibrium ionospheric

negative direction of x),

N2
VO (3+ Uo/2H)—. -

9 g–uovo ‘C02 /2H

solutions will arise

plasma flows in the

(30)

is sufficiently negative. For a stably stratified ionospheric layer, l/H <

0. The effect of plasma pressure is stabilizing because it decreases

the value of N2/g . The effect of radial plasma motion is destabilizing

in the numerator whereas it is stabilizing in the denominator. The

overall effect depends on the values of l/H and VO. Eq. (29) gives

purely damped modes for H <0 and UO <0.
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In  case  buoyancy  per turba t ions  a re  negl ig ib le  as  compared  to

magnetic field perturbations, equating coefficients of pm from Eqs.

(25) and (26) to zero and using Eq. (27), we obtain:

<(HD+4+Q-UOV0 -g) W-$-t~f/&-k2)) = O
2H 2H

(31)

2Hk 2 (g -UO V. ) + ~ - i(o i UO/2H = O (32)

F r o m  Eq, (31) we find that in case the effect of inhomogeneity is

stronger than the resistive effects, growing solutions will arise if:

&uovo-;++~)uo+pv:
~= > 0

g–UOvO –V: /2H
(33)

and in case inhomogeneity  effects are negligible as compared to

I_eSi StiVe effeCtS, i6) + q k2 and the system is stable, Equation (32)

gives unstable modes if:

Uo < -2H @+2Hk ‘ ~–UoVo)) (34)

which will be satisfied if ~+2Hk’ (g-u, v,) > 0 . The instability

condition for a stagnant plasma in the vicinity of the cometary

ionopause  is ~+2Hk 2g >0.

Iv. Computational

The non-dimensional

P=o.l /(x+

Results with Application to the Comet IIalley:

background physical quantities are given by

x~ ) (35a)
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r- ro
x’ L t

!VO=V+2

v’ =~:L2.a xl ( Xm .Xln .V:m )

(35b)

(35C)

(35d)

N2 = g / (xl. Xm .Xlrl) (35e)

9 ‘9/( L2~i) (35f)

xl = (x+xo)/xnL, Xln =1+ 2 lnXl (35g)

%
T’ = ~/(L2~i),Uo=U0 /(L~i) (35h)

2
where Vam is the square of the characteristic Alfven  velocity at the

- 2
e x t e r i o r  o f  t h e  cometo-sheath. Va  , Nz, and P a r e  s h o w n  i n  Figs

(Ja,b). U* a n d  U; are non-dimensional  plasma resistivity and

plasma velocity respectively. Q i is the Larmor  frequency of water

group ion and L is the characteristic length.

The plasma parameters for numerical computation for the comet

IIalley are: rnl = 8400 km, and ro = 4600 km, the distances from the

nucleus at which the magnetic field has maximum and minimum

values (Rnlax = 50 nT, Bnlin = O). They are used to obtain the profile

of the magnetic field in the sheath region. Nn, the number density of

neutrals  s 5.5 x 106 cm-~ with the total sublimation rate Q s 6.9

x 1029 molecule s-’ and Vn s 0.9 km s-l, v the ion neutral collision

frequency s 6 x 10-~ s-l, a the dissociative recombination rate taking
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account of the dependence on ion and neutral densities (Mendis et

al., 1985) is s7.O x 10-7 ~ 300/Te cmq s-l, where Te is  the electron

temperature. For Te - 300 K (Ip et. al., 1987), u comes out to be 7 x

10-7 cmq s-l and  for  TC - 2000 K , a comes out to be 1.565 x 10-T

cms s-l (0.2236 times smaller than that for Te = 300 K), Decrease in u

implies decrease in ~, Assuming photochemical equilibrium Eq. (5)

gives nio -3000 cm-s for 6 -- 10-6 s-l.

Using the above parameters, we have calculated the eigenvalues and

t h e  eigenfunctions wi th  the  he lp  of  the  method  descr ibed  in

Appendix A for two values of q, the plasma resistivity taken from

Cravens,  (1989) and two values of sound velocity taken from

Flammer  et al., (1991). TABLE I shows

(Wirk) relation for the nondimensional

km 2/s) and sound velocity equal to zero

plasma velocity equal to -2 km/s. TABLE

growth rate-wave number,

resistivity, ~* = 1.0 (  5

(no plasma pressure) and

11 shows growth rate-

wave number, (~ilk) relation for the nondimensional resistivity, q *

= 1.0, 0.5 ( 5, 2.5 km2/s) sound velocity equal to 1.0 and ~ km/s

and plasma velocity equal to -0.2 km/s. Flammer  et al., (1991) have

taken a plasma velocity of 5 km/s at the right end of the simulation

box ‘ which is about 13700 km from the cavity surface. The plasma

velocity decreased linearly to zero at the ionopause

have performed the stability analysis of ionospheric

1000 km thickness adjacent to the cavity surface,

boundary. We

ayer of about

in which the

plasma has a very slow motion (UO < 2 km/s). We have thus chosen a

small radial velocity to ascertain its effect on the stability. Flammer

et al., (1991) have taken plasma beta equal to 0.332 and VA , the
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Alfven  velocity of about 3 km/s, which gives a sound velocity of the

order of 1 km/s. It was a hard task to compute eigenvalues and as

such the equations were solved only for a limited number of cases

as given in the tables. It can be seen from the tables that we find

growth rates for perturbations of wavelengths ranging from 200 km

to 2000 km. However, the growth rates change by an inappreciable

amount by a change in the wavelength of perturbations. It is

noted that increase in plasma velocity reduces growth rates.

f o u n d  t h a t  the  g r o w t h rates of l inear stabil i ty decrease

also

It is

with

increasing sound velocity. It can be seen from the Tables that growth

rates are larger for smaller  resistivity, i.e., the resistivity has a

stabilizing effect. Thus, it is concluded that the plasma resistivity,

pressure and

cometo-sheath

The thickness

radial plasma motion have stabilizing effect on the

but are unable to quench the instability completely.

of the ionopause transition layer is only - 25 km

(Neubauer,  1988) and i t  was not possible to obtain solution of

equations in this layer due to the singularity in the magnetic field

(B=O at the ionopause boundary). The deeper into the ionospheric

layer, the growth ra tes  become la rger due to the fact that

hydromagnetic counterpart  of  square of the Brunt-Vaisala (Eckart,

1960) frequency, N2 (shown in Fig. (lb)), is negative and increases

sharply close to the ionopause transition layer.

We have obtained growth rates for the Halley cometo-sheath, a layer

o f  a b o u t  1 0 0 0  k m  t h i c k n e s s neglecting plasma pressure for

w a v e n u m b e r s  r a n g i n g  f r o m  k=0,3 tO k = 5 .  T h e  c o r r e s p o n d i n g

wavelengths lie in the range from 125 km to 2000 km. In the case of
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the cometosheath with no plasma pressure, the thickness of the

ionospheric layer adjacent to cavity surface is taken as 1000 km and

the characteristic length, L = 100 km whereas the thickness of the

layer and the characteric length with plasma pressure are taken as

500 km and 50. We have estimated the range of z./ z, to explore the

possibility of convection of perturbation well downstream into the

ionopause.  H e r e ,  ~, = d / Vg  ,is convec t ion  t ime  for  the

perturbations to penetrate through a distance d and Vg = co, / k, is

the group velocity; Zi = 1/ Oi , is the characteristic time for the

instability to grow. The cometo-sheath would be effectively stable if

~,/ ~i < 1 evenwhen (I)i > 0, and unstable if ~c/ ~1 >>1.

Our calculations show that ~c/ ~i = d k L co, /(L co=), varies from 20

to 35 for d = 1000 km, Wi / w, = 0.7 (from Table I) and d/L = 10 for

k *= k L varying from 3 to 5 and characteristic length, L = 100 km.

This value of appears to be sufficient for the effective penetration of

magnetic field perturbations into the cavity surface. For the case of

cometo-sheath including the effect of plasma pressure ~c/ Ti varies

from 8 to 15 for

~i / or =0.5 and kL = 2.0 and d/L = 10, for d = 500 km and L = 50

km. The value of T= obtained by Ershkovich  et al., (1989) was of the

order of 2000 s. Taking this value of ~. and the numerically obtained

value of l/~i  = 0.006, ~,/ ~i comes out to be of the order of 12 which

appears to be sufficient for the convection of perturbations well into

the cavity surface, Thus we conclude that the cometary ionopause

cannot be at rest and ripples must appear as shown in Fig, (lc),

Motion of the Halley ionopause seems to have been observed:
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according to Neubauer (1 987), Halley ionopause seemed to have

strong ripples with a wavelength of several hundred kilometers.

It would be of interest to see how the various perturbations vary in

the inner cometo-sheath. Figs. (2a,b)  and (3a,b)  show the real  and

imaginary parts of the eigenfunctions viz., pl ~, P 1 i and qr! qi (real

and imaginary parts of perturbations in density and particle flux)

for certain wave numbers for cold plasma for COr = 0.0, q*= I .0,

and Uo = O as a function of distance in km from the ionopause cavity

boundary, Figs, (2a,b)  show that perturbation in density is maximum

at the ionopause.  Figs. (3a,b)  and (5a,b) show that the perturbation in

plasma flux is also maximum at the ionopause.  The effect of plasma

pressure changes this result, i.e., the density perturbations start

decreasing after attaining a maximum at about 100 km from the

ionopause as can be seen from Figs. (6a, b). This results due to the

stabilizing effect of plasma pressure, Figs. (4a,b)  and (5a,b)  show the

eigenfunctions pmr, pmi (Pmr7 P m i are the real and imaginary parts

of perturbations in magnetic pressure) and q r, qi for the same

p a r a m e t e r s  b u t  Uo = 2 km/s as a function of distance from the

ionopause for certain wave numbers. Figs. (6a,b)  and (7a,b)  show the

eigenfunctions plr, P1.i a n d  Pmr! Pmi for certain wave numbers

for q*= 0.5, sound velocity c = Q km/s and Uo = O, Figs. (4a,b)

and (7a,b)  show that perturbation in magnetic pressure vanishes at

the ionopause which was imposed as a boundary condition for the

solution of wave equations.
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We have investigated the linear MHD stability of the cometary inner

sheath of 1000 km thickness for a cold plasma and 500 km thickness

for a hot plasma surrounding the diamagnetic cavity of the comet

Halley bounded by the ionopause on the inner side including the

effects of  resistivity, plasma pressure and motion by numerically

solving the equations governing the stability and also by discussing

certain limiting cases of the wave equations, The thickness of the

cometo-sheath for a cold and warm plasma was taken differently for

the convenience of numerical computation. The equations governing

the stability are solved numerically for certain parameters for the

c o m e t  H a l l e y  b y  u s i n g  a  t w o - p o i n t  b o u n d a r y  v a l u e  m e t h o d .

Although, the two-point boundary value method precludes the study

of the stability of the critical layer of 25 km thickness due to the

singularity of solutions as the magnetic field goes to zero at the

boundary of the transition layer, the present work is a step forward

in that it presents numerical solutions and includes the effects of

finite resistivity and radial plasma motion on the stability of the

cometo-sheath w h i c h  w e r e not cons idered  in  prev ious  papers

(Ershkovich  et al., 1989; McKenzie et al,, 1990; Srivastava  et al., 1992;

Ershkovich and Israelevich, 1992) .  The  eigenvalues are given in

tables I and 11 and the eigenfunctions are shown in Figs (2)-(7).

Certain l imiting cases of  the  wave  equa t ions  have  a l so  been

discussed.  We have obtained growth rates for disturbances of

wavelengths ranging from 125 km to 2200 km (125 km to 2200 km

for a cold plasma and 200 km to 1050 km for a warm plasma). We
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have also estimated ~~/ Ii where ~, is the convection time for the

perturbations t o  b e  c o n v e c t e d  w e l l  d o w n s t r e a m  a n d  ‘Ti is the

characteristic time for the amplitude to grow and found that it

ranges from 10 to 20 or even higher which may be sufficient for the

instabil i ty signatures to penetrate the boundary.  The effects  of

photoionization, recombination, plasma pressure, and resistivity were

found stabilizing but the instability still persisted. The slow plasma

motion included in the analysis resulted in the stabilization of the

cometo-sheath since perturbations are convected downstream with

the plasma bulk velocity before growing substantially.

The main conclusions of the study are:

1. It is shown that the magnetic field structure resulting from the

balance between the magnetic stresses and the ion-neutral drag

force in the cometary inner sheath is unstable to disturbances of

wavelengths ranging from 100 km to 2200 km for the cold plasma

and from 200 km to 1100 km for a warm plasma(sound speed of

about a kilometer/s).

2. The inclusion of plasma pressure in the stability analysis results in

the stabilization of the cometosheath. The instability rates for the

cold plasma are very much larger than those for a plasma with

pressure.

3. Effects of recombination and plasma resistivity are stabilizing but

are unable to quench the instability completely. Growth rates are

reduced by the increase in resistivity and recombination rate.
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4. The slow plasma motion included in the analysis reduces growth

rates and results  in the stabil ization of the cometo-sheath  s ince

perturbations are  convec ted  downst ream wi th  the  p lasma bulk

velocity -UO before growing substantial ly.  An est imate of ~~/ ~i

shows that it lies in the range 10 to 20(or even higher) which

appears to be sufficient for the effective penetration of the magnetic

field perturbations into the cavity surface. Thus we conclude that the

c o m e t a r y  ionopause cannot be at rest and ripples must appear as

shown in Fig. (lc). Mot ion  of  the  Hal ley  ionopause h a s  b e e n

confirmed by observations:

ionopause seemed to  have

several hundred kilometers.

according to Neubauer (1987),  Halley

strong ripples with a wavelength of

5, The main cause for the instability of the cometosheath  is

square of Brunt-Vaisala, Nz is negative and increases sharply

the ionopause transition layer (25 km thickness).

that the

close to

6. Increase in the neutral production rate causes increase in plasma

density which results in a higher value  of ~ which has stabilizing

effect .  I t  is  thus conjectured that  the inactive comets at  large

distances from the sun, say 2-3 A. U,, where productivity is less

should be highly

7. It is reasserted

Srivastava  et al.,

unstable,

(we concluded the same in our previous paper

1993) that the comets at larger distances, say 2-3

A. U., where the productivity of neutrals is less will be much more

unstable because the total sublimation rate, Q, increases with the
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number density of neutral molecules. As Q increases, VO increases

due to the increase in B. Increase in ~ results in the reduction of

growth rates.

A nonlinear stability analysis of the Halley ionopause and the

adjacent layer would be certainly helpful in understanding the the

structure of the inner sheath.



. . .
Appendix A

Equations (19), (20), and (21), and the system of

together with the boundary conditions (20) are solved

an eigenvalue problem by using a two-point boundary

They are written in the form:

4
DZj = ~ AjkZj  , j=l,4,

k=l

z3=p; = o

Z4=DP; =o atx=O

k = l , 4

2 7

equations (23)

numerically as

value method.

(Al)

(A2)

*
and p ~ and Dp ~ are bounded as x tends to infinity (x = xc) where,

Ajk is the coefficient matrix, and D = :. x = xe defines the exterior

edge of the boundary layer.

Outside the boundary layer, solutions of Eqs. (Al) are written in the

form

4
Zj = ~ Cjk exp(kk X)  ,j= 1 , 2 ,  3 , 4 (A3)

k=l

where Cjk is the fundamental matrix. The characteristic roots of the

matrix Ajk are 11 , k2 and – A3 , – Z4 which are obtained

numerically. As the solutions are bounded as x + =, t h e

eigenvalues with posit ive real  parts  viz. , k~ , L2 must  be
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d i s c a r d e d ,  t h e r e b y  l e a v i n g  o n l y two linearly independent

exponentially decaying solutions.

The eigenvalues and the eigenfunctions  are obtained with the help of

a computer code for solving two-point boundary value problems

(Scott and Watts, 1977). This method of evaluating eigenvalues and

eigenfunctions has been widely and successfully used (Nayfeh,  1981;

Floryan and Saric, 1 9 8 2 ,  S r i v a s t a v a  a n d  Dallmann, 1 9 8 7  a n d

references therein). For  f ixed  va lues  of  background phys ica l

parameters and chosen values of o,, and k an estimate for ~i is

made. The known solutions at x = xc are used as the initial

conditions and the integration is performed from x = Xe to zero. In

case the computed solution does not satisfy the boundary conditions

atx=O, (l)i is incremented by using a Newton-Raphson scheme,

The process is repeated until the boundary conditions at x = O are

satisfied to within a specified accuracy.  The eigenvalues of the

adjoint problem are the same as those of the basic problem,

The boundary conditions at x = xc are obtained by writing Eqs. (Al)

in the form:

DZ=Ati Z (A4)

w h e r e  A=

positive rea

is the matrix for x = XC. The characteristic roots with

parts lead to growing solutions. Hence, the eigenvalues

with positive real

linearly decaying

parts must be discarded, thereby leaving only two

solutions. To achieve this, we consider the general
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solution obtained by superposition of fundamental solutions. We

write,

Z = C b (A5)

The fundamental matrix C is a matrix containing no terms in x.

Inverting system (A5), we obtain

C-]z=b (A6)

The asymptotic boundary conditions require that b = O. By reducing

matrix A= to a Jordan canonical form with the help of a similarity

transformation J = P-1 A= P, and by using the concept of adjoint

system, we obtain the boundary conditions for the adjoint system as

S*Z* = () at X=Xe (A7)

where S* consists of the last row of PT. Here, P is the similarity

transformation. matrix and PT is its transpose.

The boundary conditions at x = XC for the basic system are

T z = o (A8)

where T consists of the last row of P*T, P* is the complex conjugate of

P and P*T is its transpose.



Appendix B

The coefficients of the differential equations (17) and (18) are :

all = O, alL = O, a13 =

azl = kL + ($ + Vo) ($ + P) /c: + v:

/ (?IC: )

a22

a23

a24

asl

adl

a42

a43

a

o, ald =1

3 0

‘a ( g  -  Uovo)’
~+p+:

($+ Vo) ,
.

(- Cs= (9+uo+)/c:+v:uo–

: (~ ~ ‘o) )

/ (TIC: )

.

.

.

——

.

.

irt=-m

-$ / (Tic: )

[

U. + a—

$ ($~”o) )

/ (Tic:)

o, asz = O, axs = O,

)
a34 = 1,

v:
+ ——‘2( )9 ~+voat ‘-”---” )



Appendix C

The elements of the matrix B are :

b ll = –Rh/Rhd , b12

UiJl
bls = —

v: Rhd’

b21 =

b31 =

b32 =

b33 =

bsq =

b41 =

b42 =

b43 =

bqq =

w h e r e

Rh =

Rhd =

b14

o . b22 =

(-iCO + V. ) (- iOJ + ~)

k2 – iol (g – iW.JO)

i(i) I
=_ ——

2 RhdVa

N2 1— _ —  _—
9 Rhd

b24 1 b23 =1

+ (9 – i@U()) . Rh/Rhd

/ (v;. Rhd da
‘ hd) - (l+Rhd) ~ R

31

(g - iWJo) UO / (f. 2RhdRhd) – R(l+Rhd)

N2 ( g  -  i6.)UO)_—
9 Rhd

uoRh 1i6)-b-Rhd.
(Vo – im)

[

i6.)UO — k2+~~

1

$ / (Vo – iCO)
v: , Rhd Rhd dx

[

~ 1 u:
— _

R “ Rhd .V2 1 / (V. – im)
a“ Rhd

N2 ~ 1

9 Rhd (Vo – ia)
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Fig, (6a,b)  show the real and imaginery  parts of perturbation in

density p,, and pli against distance in km from the ionopause  for

k= 0.3 and 0.4 and U()=O.O , the sound velocity, c~ = W km s-l

and q*=l .0.

Fig. (7a,b)  show the real and imaginery  parts of perturbation in

particle flux p,u,, and p, UX i against distance in km from the

ionopause  for k= 0.3 and 0.4 and U()=O.O , the sound velocity,

cs=ti km s-l and ~*=1.
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Table 1, ( ~i, k) Relation with no Plasma Pressure
L, the characteristic scale length = 100 km

kL @i i~i, the growth rates multiplied by 10

(l)~/G?i=O.O 6)~/(2i ‘0.1 (l)r/Qi ‘0.1

Tl*=l.o q*=l.o ~*=1.0, U. s-2.O km/s

(Tl=5km2 S-l  )

____________________________________________________________

0.3 0 .3710 1.76

0.4 0.3627 1.47

0.5 0.3569 1.18

0.6 0.3510 0.93

0.7 0.4348 0.88

0.8

0.9

1.0

1.1

1.2

1,5

1.8

2.0

2.5

5.0

0.3467

0.3390

0.3326

0.3319

0.3317

0 .3320

0 .3340

0 .3360

0 .3392

0.3469

0.83

0.81

0.77

0.75

0.70

0.70

0,69

0.69

0.67

0.065

0.067

0.069

0.065

--------- ----- -----  -----  -------  -----  -----  ---- ——— --- --- -—— —-—
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Table 11. ( ~i, k) Relation with Plasma Pressure
L, the characteristic scale length = 50 km

~rl~i =  O

kL ~i /~il the growth rates multiplied by 102

J_ JC~=l km/s C~= 2km/s C~=l km/s C~= 2 km/s c~=l

km/s

q*=l.o q*=l.o q*=o .5 Tl*=o .5 q*=l.o

(~=5km2 S-l ) (q=2.5km2  S-l  ) UO=–O.2 km/s

_____________________________________________________________

0.3 0.1640

0.4 0.1710

0.5 0.2230

0.6 0.2711

0.7 0,3120

0.8 0.3450

0.9 0,3621

1.0 0.3850

1.1 0.’4120

1.2

1.3

1.4

1.5

1.6

----- ----- ----- ----- ----

0.1600

0.1836

0.2103

0.2369

0.2748

0.3034

0.3275

0.3471

0.3621

----- ----- --

0.1680

0.1810

0.2360

0.2879

0.3381

0,3838

0.4264

0.4633

0.4900

0.5284

0.5410

0.5647

---- ---- ----

0.1617

0,1873

0.2254

0.2685 0.212

0.3104 0.245

0,3486

0,3838

0.4149

0.4424

0,4664

0.4871

0.5045

0.5190

0.5305

------ ----- ------ -----
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